摘要

Graphene has been widely utilized in optoelectronic applications due to its high carrier mobility, and extremely fast optical response. Microcavity-integrated graphene waveguide structure is one basic module of integrated photonic devices which can greatly improve the light-matter interaction strength. The enhanced optical absorption in the undoped graphene layer results from the light trapping and the corresponding long light-graphene interaction length. Tuning the Fermi energy level of the graphene layer enables the electro-optical modulation. We report the realization of reconfigurable electro-optical attenuator and switch with unity-order modulation depth in light reflection and transmission at near-infrared frequency. The transformation from a lossy absorber to a quasi-perfect transparent condition of the monolayer graphene by tuning the Fermi level leads to the unity-order tunability of the electro-optical attenuator and switch. We investigate theoretically and numerically the absorption properties of the designed microcavity-integrated graphene with respect to different graphene Fermi levels. Electro-optical attenuator with attenuating coefficient from 10% to 98.29% is fulfilled. On-off electro-optical switching with a switching contrast larger than 21 dB is demonstrated. Our approach provides the possibilities of graphene photonics applied in communications, and sensing.