摘要

In this paper, the effect of dimension on dispersion and absorption properties in an AlGaAs/GaAs quantum well (QW) nanostructure is investigated. We use the conduction-band Hamiltonian to calculate the envelope functions and the eigenenergies. The Schrodinger equation is solved numerically using homemade codes. Then we employ the density matrix formalism to evaluate the behavior of optical susceptibly. The impact of the width of the well and the barrier on the linear optical susceptibility behavior is explored. This investigation can be used for the optimal design of quantum well nanostructures to achieve electromagnetically induced transparency, which is much more practical than atomic structures because of their flexible design and the controllable quantum coherence effects.

  • 出版日期2015-1-1