摘要

In response to the computational challenges produced by the integrated dispatch of generation and load (IDGL), this paper proposes a novel and efficient decomposition method. The IDGL is formulated using the mixed-integer quadratic constrained programming (MIQCP) method. To efficiently solve this complex optimization problem, the nodal equivalent load shifting bidding curve (NELSBC) is proposed to represent the aggregated response characteristics of customers at a node. The IDGL is subsequently decomposed into a two-level optimization problem. At the upper level, grid operators optimize load shifting schedules based on the NELSBC of each node. Transmission losses are explicitly incorporated into the model to coordinate them with generating costs and load shifting costs. At the bottom level, customer load adjustments are optimized at individual nodes given the nodal load shifting requirement imposed by the grid operators. The key advantage of the proposed method is that the load shifting among different nodes can be coordinated via NELSBCs without iterations. The proposed decomposition method significantly improves the efficiency of the IDGL. Parallel computing techniques are utilized to accelerate the computations. Using numerical studies of IEEE 30-bus, 118-bus, and practically sized 300-bus systems, this study demonstrates that accurate and efficient IDGL scheduling results, which consider the nonlinear impact of transmission losses, can be achieved.