摘要

Learning starts with the information about a situation or experience delivered to different brain areas in terms of visual, olfactory, auditory and tactile inputs. Memory processing occurs in different brain locations in a well-defined temporal sequence of physiologically based stages and biochemical cascades. Using neuropharmacological techniques in one species and a robust bead discrimination task, we have been able to chart the passage of memory from acquisition to consolidation in the chick and to dissect out the multiple roles for noradrenaline in consolidating this memory. Fortunately only a small fraction of sensory input is remembered and it is clear that modulatory neurotransmitters play a key role in determining what is remembered. We have identified roles for noradrenaline in the mesopallium or 'avian cortex', the hippocampus, medial striatum or basal ganglia and teased out the different effects of noradrenaline in each of these areas based on the receptor subtypes activated by the transmitter and the stages on which they act. Noradrenergic input from the locus coeruleus controls memory processing at two critical times after training-acquisition (0-2.5 min after training) and consolidation (25-30 min after training). We have also elucidated some of the cellular mechanisms whereby noradrenaline achieves memory modulation and finds that it has actions on both neurones and astrocytes with particularly important effects on energy metabolism in astrocytes. The memory system of the chick is very similar to that of mammals in terms of brain regions recruited in memory processing and in the ways memory is modulated by noradrenaline.

  • 出版日期2008-6-15