摘要

This article reviews the electrical conductivity structures of the oceanic upper mantle, subduction zones, and the mantle transition zone beneath the northwestern Pacific, the Japanese Islands, and continental East Asia, which have particularly large potential of water circulation in the global upper mantle. The oceanic upper mantle consists of an electrically resistive lid and a conductive layer underlying the lid. The depth of the top of the conductive layer is related to lithospheric cooling in the older mantle, whereas it is attributable to the difference in water distribution beneath the vicinity of the seafloor spreading-axis. The location of a lower crustal conductor in a subduction zone changes according to the subduction type. The difference can be explained by the characteristic dehydration from the subducting slab in each subduction zone and by advection from the backarc spreading. The latest one-dimensional electrical conductivity model of the mantle transition zone beneath the Pacific Ocean predicts values of 0.1-1.0 S/m. These values support a considerably dry oceanic mantle transition zone. However. one-dimensional electrical profiles may not be representative of the mantle transition zone there, since there exists a three-dimensional structure caused by the stagnant slab. Three-dimensional electromagnetic modeling should be made in future studies.

  • 出版日期2009-12