Limitations in Rechargeability of Li-O-2 Batteries and Possible Origins

作者:McCloskey, B. D.*; Bethune, D. S.; Shelby, R. M.; Mori, T.; Scheffler, R.; Speidel, A.; Sherwood, M.; Luntz, A. C.
来源:Journal of Physical Chemistry Letters, 2012, 3(20): 3043-3047.
DOI:10.1021/jz301359t

摘要

Quantitative differential electrochemical mass spectrometry (DEMS) is used to measure the Coulombic efficiency of discharge and charge [(e(-)/O-2)(dis) and (e(-)/O-2)(chg)] and chemical rechargeability (characterized by the O-2 recovery efficiency, OER/ORR) for Li-O-2 electrochemistry in a variety of nonaqueous electrolytes. We find that none of the electrolytes studied are truly rechargeable, with OER/ORR <90% for all. Our findings emphasize that neither the overpotential for recharge nor capacity fade during cycling are adequate to assess rechargeability. Coulometry has to be coupled to quantitative measurements of the chemistry to measure the rechargeability truly. We show that rechargeability in the various electrolytes is limited both by chemical reaction of Li2O2 with the solvent and by electrochemical oxidation reactions during charging at potentials below the onset of electrolyte oxidation on an inert electrode. Possible mechanisms are suggested for electrolyte decomposition, which taken together, impose stringent conditions on the liquid electrolyte in Li-O-2 batteries.

  • 出版日期2012-10-18