摘要

The load current multiplier concept (LCM) was suggested for improving the energy transfer efficiency from pulse power generators to loads. The concept was initially demonstrated at atmospheric pressure and dielectric insulation on a compact, 100 kA, microsecond capacitor bank. This paper reports on the LCM design criteria for mega-ampere vacuum pulse power when the LCM comprises a large-inductance magnetic flux extruder cavity without a magnetic core. The analytical and numerical design approach presented was experimentally validated on GIT12 mega-ampere inductive energy storage generator with a constant-inductance load. The LCM technique increased the peak load current from typically 4.6 MA at 1.87 mu s on this generator, to 6.43 MA at 2.0 mu s. The electromagnetic power into a similar to 10 nH load increased from 100 GW to 230 GW. This result is in good agreement with the presented numerical simulations and it corresponds to a 95% increase of the achievable magnetic pressure at 8 cm radius in the load. The compact, LCM hardware allows the GIT12 generator to operate more efficiently without modifying the stored energy or architecture. The demonstrated load power and energy increase using the LCM concept is of importance for further studies on power amplification in vacuum and high energy density physics.

  • 出版日期2010-9