摘要

Ultraslow-light effects in two-dimensional hexagonal-lattice coupled waveguide with moon-like scatterers were theoretically studied using the plane-wave expansion method. For symmetric structures, simulations showed that slow light with high group index can be achieved by shifting the scatterers and adjusting the radius of moon-like scatterers. The maximum group index was over 8.0 x 10(4). For asymmetric structures, simulations showed that slow light with flat band and high group index can be obtained by shifting the scatterers, adjusting the radius of moon-like scatterers, and rotating the scatterers. The maximum group index was over 5.7 x 10(5) with a "saddle-like" relationship between the frequency and group index.