摘要

Different strut-cavity configurations and fuel injection patterns employed in a round supersonic combustor are numerically investigated. A new parameter defined as an ideal nozzle outlet velocity is used to evaluate performances of different strut-cavity configurations and fuel injection patterns. This parameter is a reflection of the contribution of the combustor performance to the engine thrust. The peak of the velocity curve stands for the best performance of the combustor. Then the flowfields are discussed in detail. The flow structures indicate that the injection from the wall behind a strut achieves a great penetration because of the strong upward transport that results from the streamwise vortices behind the strut. Results show that the combustor performance and the flowfields are greatly influenced by the fuel injection patterns. The fuel injections from the strut sides and from the center ring achieve the better performances than that from the wall behind the struts.