摘要

The sharp indenters such as Berkovich and conical indenters have a geometrical self-similarity so that we can obtain only one parameter from an indentation loading curve, which makes different materials have the same load-displacement relation. Most studies to evaluate elastic-plastic properties by using the geometrical self-similar indenter have therefore tried to use dual/plural indentation techniques, on the basis of the concept of representative strain/stress varying with the indenter angle. However, any suggested representative concept is not universally operative for real materials. In this work, we suggest a method of material property evaluation without using the concept of representative strain. We begin the work by studying the characteristics of load-depth curves of conical indenters via finite element (FE) method. From FE analyses of dual-conical indentation, we investigate the relationships between indentation parameters and load-depth curves. The projected contact diameter is expressed as a function of the indenter angle, tip-radius, and material properties, which allows us to simply predict the elastic modulus. Two mapping functions for two indenter angles (45 degrees and 70.3 degrees) are presented to find the two unknowns (yield strain and strain-hardening exponent) via dual indentation technique. The method provides elastic modulus, yield strength and strain-hardening exponent with an average error of less than 5%. The method is valid for any elastically deforming indenters. We also discuss the sensitivity of measured properties to the load-displacement curve variation, and the difference between conical and Berkovich indenters.

  • 出版日期2011-6