Nonlinear Lifting Line Theory Applied to Vertical Axis Wind Turbines: Development of a Practical Design Tool

作者:Marten David*; Pechlivanoglou Georgios; Nayeri Christian Navid; Paschereit Christian Oliver
来源:Journal of Fluids Engineering-Transactions of the ASME, 2018, 140(2): 021107.
DOI:10.1115/1.4037978

摘要

Recently, a new interest in vertical axis wind turbine (VAWT) technology is fueled by research on floating support structures for large-scale offshore wind energy application. For the application on floating structures at multimegawatt size, the VAWT concept may offer distinct advantages over the conventional horizontal axis wind turbine (HAWT) design. As an example, VAWT turbines are better suited for upscaling, and at multimegawatt size, the problem of periodic fatigue cycles reduces significantly due to a very low rotational speed. Additionally, the possibility to store the transmission and electricity generation system at the bottom, compared to the tower top as in a HAWT, can lead to a considerable reduction of material logistics costs. However, as most VAWT research stalled in the mid 1990s, no sophisticated and established tools to investigate this concept further exist today. Due to the complex interaction between unsteady aerodynamics and movement of the floating structure, fully coupled simulation tools modeling both aero and structural dynamics are needed. A nonlinear lifting line free vortex wake (LLFVW) code was recently integrated into the open source wind turbine simulation suite QBLADE. This paper describes some of the necessary adaptions of the algorithm, which differentiates it from the usual application in HAWT simulations. A focus is set on achieving a high robustness and computational efficiency. A short validation study compares LLFVW results with those of a two-dimensional (2D) unsteady Reynolds-averaged Navier-Stokes (URANS) simulation.

  • 出版日期2018-2