摘要

The reinforcement of short-cut denitrification towards simultaneous nitrogen and phosphate removal was investigated in a step-feed alternating anoxic-oxic sequencing batch reactor (SAOSBR) treating real domestic wastewater with low C/N ratio. Meanwhile, the mechanism of improving biological phosphorus removal by short-cut denitrification was also analyzed. Nitritation was achieved with the nitrite accumulation rate (NAR) of above 95%, which attribute to starving treatment and alternate with anoxic and aerobic. This nitritation enhanced the simultaneous nitrogen and phosphate removal, and the average removal rate of total nitrogen and phosphate increased by about 6% and 36%, respectively. Batch experiments also indicated that the carbon source competition between denitrifying bacteria with phosphorus accumulating organisms (PAOs) was weaken while nitrite was used as electron acceptor for denitrification under the condition of insufficient carbon source. The reason of enhanced biological phosphorus removal was that residual nitrite had small effect on anaerobic phosphorus release in PAOs. Thereby the quantity of anaerobic phosphorus release and poly-β-hydroxyalkanoate (PHA) synthesis in PAOs were enhanced. Therefore, short-cut denitrification was more advantageous in removing phosphorus in treating wastewater with limited carbon source.

全文