摘要

The selective adsorption of single-stranded oligonucleotides (ssDNA) on gold nanoparticles (AuNPs) is well known for stabilizing the AuNPs against aggregation even at high salt concentrations. Our investigation shows that the non-crosslinking aggregation of arbitrary ssDNA-capped AuNPs occurs due to their interaction with the cationic polyamine, spermine (Spm), even without any addition of NaCl. The non-crosslinking aggregation mechanism is that the Spm, served as multivalent counterions, plays the dual roles of charge shielding and ion bridging among the ssDNA-capped AuNPs, which jointly result in the aggregation of the ssDNA-capped AuNPs. Therefore, a sensitive and highly selective colorimetric method for the detection of Spm was developed. To the best of our knowledge, it is the first successful case as to the efforts towards the development of optical assays for cationic polyamine, showing neither natural UV absorption nor fluorescence. Compared with the traditional methods of chromatography and capillary electrophoresis, the approach described here would provide a convenient alternative and new train of thought for the specific detection of Spm in both biological fluid and fermented products.