摘要

Monitoring sample areas is the basis of ecological management. Songshan National Nature Reserve is one of the most important components of the ecosystem of the central metropolitan area of Beijing, and has fallen behind in its monitoring technology and methods. So, updating the existing equipment and technology is necessary. The current system suffers from high equipment costs and is not convenient to carry, so the work efficiency is low. Furthermore, the data cannot be visualized in three dimensions (3D), and complex terrain conditions cannot be measured. Therefore, this study researched and developed a continuous terrestrial photogrammetric measurement system that is theoretically based on the principles of photogrammetry, image processing technology, and dendrometry. The system applies a self-developed personal digital assistant (PDA) photogrammetry-based dendrometer and software to continuously evaluate stand sampling areas. Through experimental verification, the relative root mean square error (RMSE) of the trunk diameter measurements was found to be 5.59%, and the relative RMSE of hypsometrical measurements was 3.93%, which are both higher than the accuracy required for traditional forestry surveys. Furthermore, the advantages of this system include its low cost, lightweight equipment, easy operation, high measurement efficiency, 3D visualization, and applicability under complex terrain conditions. Since it is highly accurate and efficient, the continuous terrestrial photogrammetric system can be easily applied to monitor stand sampling areas in Songshan National Nature Reserve. In addition, it can be applied to second-class forest surveys in China, thus guaranteeing the monitoring of big data for the ecological environment of China.