摘要

This article investigates superplastic forming (SPF) technique in conjunction with finite element (FE) simulation applied to dental repair. The superplasticity of Ti-6Al-4V alloys has been studied using a uniquely designed five-hole test with the aim of obtaining the modeled grain size and the flow stress parameters. The data from the five-hole test are subsequently put into the FE program for the simulation of a partial upper denture dental prosthesis (PUD4). The FE simulation of the PUD4 is carried out to set up appropriate input parameters for pressing due to the SPF process being fully automatic controlled. A variety of strain rates ranging from 2.4 x 10(-5) to 1 x 10(-3) s(-1) are selected for the characterization of superplastic properties of the alloy. The Superflag FE program is used to generate an appropriate pressure-time profile and provide information on thickness, grain size, and grain growth rate distribution. Both membrane elements and solid elements have been adopted in the simulation and the results from both types of elements are compared. An evaluation of predicted parameters for the SPF of the prosthesis is presented.

全文