摘要

Membrane fluidity change has long been suggested as the primary mechanism by which, plants adapt to cold stress, but the underlying molecular mechanisms are not completely established. In this study, we found that a knockout of acyl-lipid/CoA desaturase 1 gene (ADS1; EC 1.14.99) enhances freezing tolerance after cold acclimation (CA). Fatty acid composition analysis demonstrated that 18:1 content in ads1 mutant plants was 20% lower than in wild-type (WT) grown at 23 degrees C. Lipidomics revealed that 34C-species of monogalactosyl diacylglycerol (MGDG) content in ads1 mutants were 3.3-14.9% lower than in WT. Lipid positional analysis identified 10% lower 18:1 fatty acid content at the sn-2 position of MGDG. The cytosolic calcium content in ads1 mutant plants was also approximately two-times higher than that of WT in response to cold shock. Each of these biochemical differences between WT and ads1 mutant disappeared after CA. Subcellular localization of C- and N-terminal enhanced-fluorescence-fusion proteins indicated that ADS1 localized exclusively to chloroplasts. These observations suggest that ADS1-mediated alteration of chloroplast membrane fluidity is required to prime a CA response, and is the upstream event of cytosolic calcium signaling.