摘要

Piezoelectric actuators have been widely used in positioning stages because of their compact size, stepping controllability, and holding force. This study proposes a piezoelectric-driven stage composed of a bi-electrode piezoelectric slab, capacitive position sensor, and capillary filling detector for filling liquid samples into nanopipettes using capillary flow. This automatic sample-filling device is suitable for transmission electron microscopy image-based quantitative analysis of aqueous products with added nanoparticles. The step length of the actuator is adjusted by a pulse width modulation signal that depends on the stage position; the actuator stops moving once the capillary filling has been detected. A novel dynamic model of the piezoelectric-driven stage based on collision interactions between the piezoelectric actuator and the sliding clipper is presented. Unknown model parameters are derived from the steady state solution of the equivalent steady phase angle. The output force of the piezoelectric actuator is formulated using the impulse and momentum principle. Considering the applied forces and related velocity between the sliding clipper and the piezoelectric slab, the stage dynamic response is confirmed with the experimental results. Moreover, the model can be used to explain the in-phase slanted trajectories of piezoelectric slab to drive sliders, but not elliptical trajectories. The maximum velocity and minimum step length of the piezoelectric-driven stage are 130mms(-1) and 1 mu m respectively.