ATP release during cell swelling activates a Ca2+-dependent Cl- current by autocrine mechanism in mouse hippocampal microglia

作者:Murana E; Pagani F; Basilico B; Sundukova M; Batti L; Di Angelantonio S; Cortese B; Grimaldi A; Francioso A; Heppenstall P; Bregestovski P; Limatola C; Ragozzino D
来源:Scientific Reports, 2017, 7(1): 4184.
DOI:10.1038/s41598-017-04452-8

摘要

Microglia cells, resident immune cells of the brain, survey brain parenchyma by dynamically extending and retracting their processes. Cl- channels, activated in the cellular response to stretch/swelling, take part in several functions deeply connected with microglia physiology, including cell shape changes, proliferation, differentiation and migration. However, the molecular identity and functional properties of these Cl- channels are largely unknown. We investigated the properties of swelling-activated currents in microglial from acute hippocampal slices of Cx3cr1(+/GFP) mice by whole-cell patch-clamp and imaging techniques. The exposure of cells to a mild hypotonic medium, caused an outward rectifying current, developing in 5-10 minutes and reverting upon stimulus washout. This current, required for microglia ability to extend processes towards a damage signal, was carried mainly by Cl- ions and dependent on intracellular Ca2+. Moreover, it involved swelling-induced ATP release. We identified a purine-dependent mechanism, likely constituting an amplification pathway of current activation: under hypotonic conditions, ATP release triggered the Ca2+-dependent activation of anionic channels by autocrine purine receptors stimulation. Our study on native microglia describes for the first time the functional properties of stretch/swelling-activated currents, representing a key element in microglia ability to monitor the brain parenchyma.

  • 出版日期2017-6-23