摘要

Here, it is demonstrated that the size tunable hollow gold nanospheres (HGNs) of approximate to 24-122 nm in diameter can be facilely achieved by controlling a signal parameter, reaction temperature, in the synthesis. The varied particle sizes of HGNs result in highly tunable surface plasmon resonance (SPR) absorption in the entire visible to near infrared region of the spectrum, with maximum peak position from 565 to 850 nm when the reaction temperature is varied from 80 to 10 degrees C. The particle size and structural properties are determined using dynamic light scattering, transmission- mode scanning electron microscopy, and high-resolution transmission electron microscopy. The optical properties are characterized using UV-vis spectroscopy. A mechanism behind the temperature-dependent HGN synthesis is explained by the thermodynamics of homogeneous nuclei formation of the cobalt scaffold. Discrete dipole approximation calculations are performed to simulate the SPR spectrum and provide insight into the relation between the SPR absorption and structural details of the HGNs. This study demonstrates a simple yet effective method based on temperature control for synthesizing produce size tunable HGNs with varying properties of interest for different applications.