摘要

We investigated the potential use of gas chromatography mass spectrometry (GC-MS), in combination with multivariate statistical data processing, to build a model for the classification of various tuberculosis (TB) causing, and non-TB Mycobacterium species, on the basis of their characteristic metabolite profiles. A modified Bligh-Dyer extraction procedure was used to extract lipid components from Mycobacterium tuberculosis, Mycobacterium avium, Mycobacterium bovis, and Mycobacterium kansasii cultures. Principle component analyses (PCA) of the GC-MS generated data showed a clear differentiation between all the Mycobacterium specie; tested. Subsequently, the 12 compounds best describing the variation between the sample groups were identified.as potential metabolite markers, using PCA and partial least-squares discriminant analysis (PLS-DA). These metabolite markers were then used to build a discriminant classification model based on Bayes' theorem, in conjunction with multivariate kernel density estimation. This model subsequently correctly classified 2 "unknown" samples for each of the Mycobacterium species analysed, with probabilities ranging from 72 to 100%. Furthermore, Mycobacterium species classification could be achieved in less than 16 h, and the detection limit for this approach was 1 x 10(3) bacteria mL(-1) This study proves the capacity of a GC-MS, metabolomics pattern recognition approach for its possible use in TB diagnostics and disease characterisation.

全文