摘要

Biological soil disinfestation (BSD) is an effective method to suppress soilborne plant diseases by incorporation of plant biomass into soil under reduced, anoxic condition. Usefulness of Japanese-radish (daikon) residue as plant biomass for BSD was investigated by both model and field experiments in comparison with the effects of Brassica juncea plants or wheat bran. Considerable amounts of acetate together with minor amounts of propionate and butyrate were detected from the radish-treated soils at similar levels with those in soils treated with B. juncea plants or wheat bran. BSD treatments with radish residue reduced spinach wilt disease incidence in both model and field experiments. When the BSD-treated soil was treated again with irrigation and covering without biomass before next cropping, however, wilt disease was hardly suppressed. Clone library analysis based on 16S rRNA gene sequences was carried out to determine the changes in the bacterial community compositions in the treated soil samples. The analyses showed that the bacterial communities in the radish-treated soils were dominated by members of the classes Clostridia and Bacilli of the phylum Firmicutes in both experiments. The clostridial groups detected were diverse and the major operational taxonomic units (OTUs) were closely related to Clostridium saccharobutylicum, Clostridium sufflavum, Clostridium xylanovorans, and Oxobacter pfennigii, which had been commonly detected as the dominant groups in BSD-soils treated with B. juncea plants or wheat bran in our previous studies. The dominant clone groups belonging to the Bacilli class were closely related to several species such as Bacillus niacini, Bacillus circulans, and Bacillus pycnus. Dominancy of the Bacilli groups seemed to increase when radish residue was repeatedly applied as BSD material.

  • 出版日期2014-7