摘要

The physical attributes of the dynamic vehicle-to-vehicle propagation channel can be utilized for the generation of highly random and symmetric cryptographic keys. However, in a physical-layer key agreement scheme, nonreciprocity due to inherent channel noise and hardware impairments can propagate bit disagreements. This has to be addressed prior to the symmetric key generation which is inherently important in Social Internet of Things networks, including in adversarial settings (e.g., battlefields). In this paper, we parametrically incorporate temporal variability attributes, such as 3-D scattering and scatterers' mobility. Accordingly, this is the first work to incorporate such features into the key generation process by combining nonreciprocity compensation with turbo codes (TCs). Preliminary results indicate a significant improvement when using TCs in bit mismatch rate and key generation rate in comparison to sample indexing techniques.

  • 出版日期2018-8