摘要

This paper outlines a new durability model to assess the first inspection and maintenance period for structures. Practical scatter factor formulae are presented to determine the safe fatigue crack initiation and propagation lives from the results of a single full-scale test of a complete structure. New theoretical solutions are proposed to determine the s(a)-s(m)-N surfaces of fatigue crack initiation and propagation. Prediction techniques are then developed to establish the relationship equation between safe fatigue crack initiation and propagation lives with a specific reliability level using a two-stage fatigue damage cumulative rule. A new durability model incorporating safe life and damage tolerance design approaches is derived to assess the first inspection and maintenance period. Finally, the proposed models are applied to assess the first inspection and maintenance period of a fastening structure at the root of helicopter blade.