摘要

The valence shell electronic structure and photoionisation dynamics of para-dichlorobenzene and para-bromochlorobenzene have been investigated both experimentally and theoretically. High resolution photoelectron spectra of the outer valence orbitals have been recorded with HeI radiation and the observed structure has been interpreted using calculated ionisation energies and spectral intensities. The theoretical predictions for the single-hole ionic states due to outer valence ionisation agree satisfactorily with the experimental results. Ionisation from the inner valence orbitals is strongly influenced by many-body effects and the with a particular orbital is spread amongst numerous satellites. Some of the photoelectron bands exhibit vibrational progressions and tentative assignments have been proposed. The photoionisation dynamics of the outer valence orbitals of para-dichlorobenzene have been investigated theoretically by using the continuum multiple scattering approach to calculate photoionisation partial cross-sections and photoelectron anisotropy parameters. The results show that ionisation from some of the orbitals is affected by the Cooper minimum associated with the chlorine atom. Synchrotron radiation has been used to record angle resolved photoelectron spectra of the entire valence shell, for photon energies between threshold and similar to 100 eV, and these have allowed the corresponding experimental data to be derived. A comparison between the predicted and measured anisotropy parameters confirms the influence of the Cooper minimum in those orbitals related to the chlorine lone-pairs.

  • 出版日期2013-3-29