Nitrogen Source Stabilization of Quorum Sensing in the Pseudomonas aeruginosa Bioaugmentation Strain SD-1

作者:Wang, Mei-Zhen; Lai, Bai-Min; Dandekar, Ajai A.; Yang, Yu-Sheng; Li, Na; Yin, Jun; Shen, Dong-Sheng*
来源:Applied and Environmental Microbiology, 2017, 83(16): e00870-17.
DOI:10.1128/AEM.00870-17

摘要

Pseudomonas aeruginosa SD-1 is efficient at degrading aromatic compounds and can therefore contribute to the bioremediation of wastewater. P. aeruginosa uses quorum sensing (QS) to regulate the production of numerous secreted "public goods." In wastewater bioaugmentation applications, there are myriad nitrogen sources, and we queried whether various nitrogen sources impact the stabilities of both QS and the bacterial populations. In a laboratory strain of P. aeruginosa, PAO1, the absence of a nitrogen source has been shown to destabilize these populations through the emergence of QS mutant "cheaters." We tested the ability of SD-1 to grow in casein broth, a condition that requires QS for growth, when the nitrogen source with either NH4Cl, NaNO3, or NaNO2 or with no added nitrogen source. There was great variability in susceptibility to invasion by QS mutant cheaters and, by extension, the stability of the SD-1 population. When grown with NH4Cl as an extra nitrogen source, no population collapse was observed; by contrast, two-thirds of cultures grown in the presence of NaNO2 collapsed. In the populations that collapsed, the frequency of social cheaters exceeded 40%. NaNO3 and NaNO2 directly favor QS mutants of P. aeruginosa SD-1. Although the mechanism by which these nitrogen sources act is not clear, these data indicate that the metabolism of nitrogen can affect the stability of bacterial populations, an important observation for continuing industrial applications with this species.