摘要

Trophically-transmitted parasites can affect intermediate host behaviors, resulting in spatial differences in parasite prevalence and distribution that shape the dynamics of hosts and their ecosystems. This variability may arise through differences in physical habitats or biological interactions between parasites and their hosts, and may occur on very fine spatial scales. Using a pseudophyllidean cestode (Schistocephalus solidus) and the threespine stickleback (Gasterosteus aculeatus) as a model parasite-host complex, we investigated the association of infection with host diet composition and stomach fullness in different habitats of two large lakes in southwest Alaska. To become infected, the fish must consume pelagic copepods infected with the parasite's procercoid stage, so we predicted higher infection rates of fish in offshore habitats (where zooplankton are the primary prey) compared to fish from the littoral zone. Sticklebacks collected from the littoral and limnetic zones were assayed for parasites and their stomach contents were classified, counted, and weighed. Contrary to our prediction, permutational multivariate analysis of variance and principal components analysis revealed that threespine sticklebacks in the littoral zone, which consumed a generalist diet (pelagic zooplankton and benthic invertebrates), had higher parasite prevalence and biomass intensity than conspecifics in the limnetic zone, which consumed zooplankton. These results, consistent in two different lakes, suggest that differences in parasite prevalence between habitats may have been determined by a shift in host habitat due to infection, differential host mortality across habitats, differential procercoid prevalence in copepods across habitats, or a combination of the three factors. This paradoxical result highlights the potential for fine spatial variability in parasite abundance in natural systems.

  • 出版日期2018-3