摘要

The work focuses on the max link selection (MLS) schemes of buffer-aided relaying over the independent and non-identically distributed (i.ni.d) Nakagami-m fading channels in terms of outage probability, average packet delay, and improved diversity-delay trade-off schemes. By modeling the transition of buffer states as a Markov chain, we first obtain the outage probability and average packet delays for MLS schemes, which are given with closed-form expressions. The achieved results show that the i.ni.d fading channels impose severe loss in the diversity and coding gains of MLS schemes. Especially, when the disparity among the channel powers is very large, the diversity order provided by the MLS schemes is less than the ones provided by the traditional best relay selection (T-BRS) and max-max link selection (MMLS) schemes even if the buffers' size is large enough. For the average packet delay of MLS schemes, our results show that they are impacted by the transmit power and the fading severity factors. In general, in the low transmit power, the average packet delays are varying with the transmit power. However, in the high transmit power, the average packet delays approach the stationary values. Besides of this, it is also achieved that the i.ni.d fading makes the average packet delays of MLS schemes at all relays are different. When the powers of relay-destination links are greater than the ones of source-relay links, the average packet delays can be reduced evidently. Motivated by the observations, a weight-based MLS (W-MLS) diversity-delay trade-off scheme is proposed. The proposed W-MLS diversity-delay trade-off schemes not only have the low packet delays at all relays but also provide enough diversity and coding gains over T-BRS and MMML, which can overcome the performance loss caused by non-identical distribution on MLS schemes.

全文