Neuroprotective Effects of Thymoquinone on the Hippocampus in a Rat Model of Traumatic Brain Injury

作者:Gulsen Ismail; Ak Hakan*; Colcimen Nese; Alp Hamit H; Akyol Mehmet E; Demir Ismail; Atalay Tugay; Balahroglu Ragip; Ragbetli Murat C
来源:World Neurosurgery, 2016, 86: 243-249.
DOI:10.1016/j.wneu.2015.09.052

摘要

BACKGROUND: Traumatic brain injury is a leading cause of morbidity and mortality worldwide. We evaluated the neuroprotective effects of thymoquinone (TQ) in a rat model of traumatic brain injury by using biochemical and histopathologic methods for the first time. MATERIALS AND METHODS: Twenty-four rats were divided into sham (n = 8), trauma (n = 8), and TQ-treated (n = 8) groups. A moderate degree of head trauma was induced with the use of Feeney's falling weight technique, and TQ (5 mg/kg/day) was administered to the TQ-treated group for 7 days. All animals were killed after cardiac perfusion. Brain tissues were extracted immediately after perfusion without damaging the tissues. Biochemical procedures were performed with the serum, and a histopathologic evaluation was performed on the brain tissues. Biochemical experiments included malondialdehyde (MDA), reduced and oxidized coenzyme Q10 analysis, DNA isolation and hydroylazation, and glutathione peroxidase, and superoxide dismutase analyses. RESULTS: Neuron density in contralateral hippocampal regions (CA1, CA2-3, and CA4) 7 days after the trauma decreased significantly in the trauma and TQ-treated groups, compared with that in the control group. Neuron densities in contralateral hippocampal regions (CA1, CA2-3, and CA4) were greater in the TQ-treated group than in the trauma group. TQ did not increase superoxide dismutase or glutathione peroxidase antioxidant levels. However, TQ decreased the MDA levels. CONCLUSIONS: These results indicate that TQ has a healing effect on neural cells after head injury and this effect is mediated by decreasing MDA levels in the nuclei and mitochondrial membrane of neurons.

  • 出版日期2016-2