摘要

The dry sliding wear characteristics of a glass-epoxy (G-E) composite, filled with both silicon carbide (SiCp) and graphite (Gr), were studied using a pin-on-disc test apparatus. The specific wear rate was determined as a function of sliding velocity, applied load and sliding distance. The laminates were fabricated by the hand lay-up technique. The volume percentage of filler materials in the composite was varied, silicon carbide was varied from 5 to 10% whereas graphite was kept constant at 5%. The excellent wear resistance was obtained with glass-epoxy containing fillers. The transfer film formed on the counter surface was confirmed to be effective in improving the wear characteristics of filled G-E composites. The influence of applied load is more on specific wear rate compared to the other two wear parameters. The worn surfaces of composites were examined with scanning electron microscopy (SEM) to investigate the probable wear mechanisms. It was found that in the early stage of wear, the fillers contribution is significant. The process of transfer film, debris formation and fiber breakage accounts for the wear at much later stages.

  • 出版日期2012-8-30