摘要

Mineral salt bricks are often used in cow raising as compensation for mineral losses to improve milk yield, growth, and metabolic activity. Generally, effects of minerals are partially thought to result from improvement of microbial metabolism, but their influence on the rumen microbiota has rarely been documented to date. In this study, we investigated the response of microbiota to mineral salt in heifer and adult cows and evaluated ruminal fermentation and enteric methane emissions of cows fed mineral salts. Twelve lactating Holstein cows and twelve heifers fed a total mixed ration (TMR) diet were randomly allocated into two groups, respectively: a treatment group comprising half of the adults and heifers that were fed mineral salt and a control group containing the other half fed a diet with no mineral salt supplement. Enteric methane emissions were reduced by 9.6% (P < 0.05) in adults ingesting a mineral salt diet, while concentrations of ruminal ammonia, butyrate, and propionate were increased to a significant extent (P < 0.05). Enteric methane emissions were also reduced in heifers ingesting a mineral salt diet, but not to a significant extent (P > 0.05). Moreover, the concentrations of ammonia and volatile fatty acids (VFAs) were not significantly altered in heifers (P > 0.05). Based on these results, we performed high-throughput sequencing to explore the bacterial and archaeal communities of the rumen samples. Succiniclasticum and Prevotella, two propionate-producing bacteria, were predominant in samples of both adults and heifers. At the phylotype level, mineral salt intake led to a significant shift from Succiniclasticum to Prevotella and Prevotellaceae populations in adults. In contrast, reduced abundance of Succiniclasticum and Prevotella phylotypes was observed, with no marked shift in propionate-producing bacteria in heifers. Methanogenic archaea were not significantly abundant between groups, either in adult cows or heifers. The shift of Succiniclasticum to Prevotella and Prevotellaceae in adults suggests a response of microbiota to mineral salt that contributes to higher propionate production, which competes for hydrogen utilized by methanogens. Our data collectively indicate that a mineral salt diet can alter interactions of bacterial taxa that result in enteric methane reduction, and this effect is also influenced in an age-dependent manner.