摘要

A catalyst consisting of Ru (5%) dispersed on 15% MgO/Al2O3 carrier exhibits high activity and selectivity, as well as satisfactory stability with time on stream, under conditions of steam reforming of acetic acid, a model compound for pyrolysis oil. The presence of MgO in the catalyst formulation is shown to be related to oxygen and/or hydroxyl radical spillover from the carrier to the metal particles. A series of Ru/MgO/Al2O3 catalysts supported on cordierite monoliths, ceramic foams and gamma-Al2O3 pellets were prepared and tested for the production of hydrogen by catalytic steam reforming of the aqueous fraction of bio-oil. All different structural forms of the catalyst exhibited satisfactory activity, converting completely the bio-oil, good selectivity toward hydrogen and satisfactory stability with time on stream. However, the catalyst supported on pellets exhibited the best catalytic performance, among all catalysts investigated. Reforming reactions, and thus hydrogen production, are favoured at high temperatures and low space velocities. Coking is one of the most significant problems encountered in these processes. It was found that only a small part of the incoming carbon is deposited on the catalyst surface, which is mainly present as CHx. However, coke deposition is more intense on the reactor wall above the catalytic bed, due to homogeneous polymerization of unstable ingredients of bio-oil.

  • 出版日期2007-9-30