摘要

Motor imagery-based brain-computer interfaces (BCIs) training has been proved to be an effective communication system between human brain and external devices. A practical problem in BCI-based systems is how to correctly and efficiently identify and extract subject-specific features from the blurred scalp electroencephalography (EEG) and translate those features into device commands in order to control external devices. In real BCI-based applications, we usually define frequency bands and channels configuration that related to brain activities beforehand. However, a steady configuration usually loses effects due to individual variability among different subjects in practical applications. In this study, a robust tensor-based method is proposed for a multiway discriminative subspace extraction from tensor-represented EEG data, which performs well in motor imagery EEG classification without the prior neurophysiologic knowledge like channels configuration and active frequency bands. Motor imagery EEG patterns in spatial-spectral-temporal domain are detected directly from the multidimensional EEG, which may provide insights to the underlying cortical activity patterns. Extensive experiment comparisons have been performed on a benchmark dataset from the famous BCI competition III as well as self-acquired data from healthy subjects and stroke patients. The experimental results demonstrate the superior performance of the proposed method over the contemporary methods.