摘要

We report the results of an extensive multi-stress ratio experimental study on the axial fatigue behavior of an all-carbon hierarchical composite laminate, in which carbon nanofibers (CNFs) are utilized alongside traditional micron-sized carbon fibers. Primary carbon fibers were arranged in matrix-dominated biax +/- 45 degrees lay-ups in order to establish matrix and matrix/fiber interaction based performance. CNFs were matrix dispersed by three-roll calender milling. Results indicate that the CNF-reinforced composites collectively possess improved fatigue and static properties over their unmodified counterparts. Large mean lifetime improvements of 150-670% were observed in fully compressive, tensile and tensile dominated loadings. Enhancements are attributed to the high interface density and damage shielding effect of the CNFs within the matrix. Further improvements are believed to occur when the nanofibers arrest and redistribute small scale, slowly propagating matrix cracks at low applied stresses. These results highlight the ability of a nanometer-sized reinforcing phase to actively participate and enhance matrix properties while moving toward a cost effective alternative to current material solutions.

  • 出版日期2012-2-7