A Green's function decoupling scheme for the Edwards fermion-boson model

作者:Edwards D M*; Ejima S; Alvermann A; Fehske H
来源:Journal of Physics: Condensed Matter , 2010, 22(43): 435601.
DOI:10.1088/0953-8984/22/43/435601

摘要

Holes in a Mott insulator are represented by spinless fermions in the fermion-boson model introduced by Edwards. Although the physically interesting regime is for low to moderate fermion density, the model has interesting properties over the whole density range. It has previously been studied at half-filling in the one-dimensional (1D) case by numerical methods, in particular using exact diagonalization and the density matrix renormalization group (DMRG). In the present study the one-particle Green's function is calculated analytically by means of a decoupling scheme for the equations of motion, valid for arbitrary density in 1D, 2D and 3D with fairly large boson energy and zero boson relaxation parameter. The Green's function is used to compute some ground state properties, and the one-fermion spectral function, for fermion densities n = 0.1, 0.5 and 0.9 in the 1D case. The results are generally in good agreement with numerical results obtained using the DMRG and dynamical DMRG, and new light is shed on the nature of the ground state at different fillings. The Green's function approximation is sufficiently successful in 1D to justify future application to the 2D and 3D cases.

  • 出版日期2010-11-3