摘要

are characterized by optical-electrical-optical (OEO) conversion of wavelength division multiplexing line wavelengths and by an electronic switching providing wavelength routing. The recent implementation of monolithically integrated large-scale photonic integrated circuits (PICs) in indium phosphide of terabit capacity cross-point switches and of high-capacity optical transport network (OTN) processor chips has allowed not only a considerable reduction in cost and power consumption of the OEO conversion stage but has also enabled the integration, in the same hardware, of OTN sub-wavelength switching and wavelength switching. To reduce the switching fabric complexity, we propose and investigate the structure of a scalable switch core composed of a space switching fabric routing only signals at a higher rate (high-order optical channel data unit (ODU)) and by OTN time-space switching fabrics switching both signals at a lower rate (low-order ODU) and a higher rate (high-order ODU). The lower hardware complexity of the proposed switching fabric is to be paid with a sub-flow blocking that we have investigated by introducing an analytical model validated by simulation. The blocking performance is evaluated as a function of the main switch and traffic parameters and under some traffic aggregation and routing policies. We show that in some traffic scenarios the blocking probability can reach a value of 10(-8) if suitable resource management policies are adopted.

  • 出版日期2012-12