摘要

The detailed sorption steps and biodegradation characteristics of fluoroquinolones (FQs) including ciprofloxacin, enrofloxacin, lomefloxacin, norfloxacin, and ofloxacin were investigated through batch experiments. The results indicate that FQs at a total concentration of 500 mu g/L caused little inhibition of sludge bioactivity. Sorption was the primary removal pathway of FQs in the activated sludge process, followed by biodegradation, while hydrolysis and volatilization were negligible. FQ sorption on activated sludge was a reversible process governed by surface reaction. Henry and Freundlich models could describe the FQ sorption isotherms well in the concentration range of 100-300 mu g/L. Thermodynamic parameters revealed that FQ sorption on activated sludge is spontaneous, exothermic, and enthalpy-driven. Hydrophobicity-independent mechanisms determined the FQ sorption affinity with activated sludge. The zwitterion of FQs had the strongest sorption affinity, followed by cation and anion, and aerobic condition facilitated FQ sorption. FQs were slowly biodegradable, with long half-lives (>100 hr). FQ biodegradation was enhanced with increasing temperature and under aerobic condition, and thus was possibly achieved through co-metabolism during nitrification. This study provides an insight into the removal kinetics and mechanism of FQs in the activated sludge process, but also helps assess the environmental risks of FQs resulting from sludge disposal.

  • 出版日期2017-6
  • 单位中国科学院