摘要

The multiple scattering of flexural waves and dynamic stress concentration in a semi-infinite thin plate with a cutout are investigated, and the expressions of this problem are obtained. The analytical solutions of wave fields are expressed by employing the wave function expansion method and the expanded mode coefficients are solved by satisfying the boundary condition of the cutout. The image method is used to satisfy the traction free boundary condition of the plate. As an example, the numerical results of dynamic stress concentration factors are graphically presented and discussed. Numerical results show that the analytical results of the scattered waves and dynamic stress in semi-infinite plates are significantly different from those in infinite plates when the ratio of distance b/a is relatively little. In the region of low frequency and long wavelength, the maximum dynamic stress concentration factors occur on the illuminated side of the scattering body with theta = pi, but not at the edge of the cutout with theta = pi/2. As the incidence frequency increases (the wavelength becomes short), the dynamic stress on the illuminated side of the cutout decreases, however, the dynamic stress on the shadow side increases.