摘要

In this paper, we propose a novel full and selective chaos-based image encryption scheme suitable for medical image encryption applications. The proposed approach consists of several rounds, where each round is made up of two phases, a shuffling phase and a masking phase. Both phases are block-based and use chaotic cat maps to shuffle and mask an input image. To improve the speed of the proposed scheme while maintaining a high level of security, the scheme employs a pseudorandom matrix, of the same size as the input image, in the masking phase of each round. Blocks of this pseudorandom matrix are permuted in each round of the shuffling phase according to the outputs of some chaotic maps. The proposed scheme applies mixing between blocks of the image in order to prevent cryptanalytic attacks such as differential attacks. Simulation results demonstrate high performance of the proposed scheme and show its robustness against cryptanalytic attacks, thus confirming its suitability for real-time secure image communication.

  • 出版日期2015-7