摘要

For the fabrication of the "lotus-type" fibers a combination of two major requirements, low surface energy and the magnified of the degree of roughness, should be utilized. In this research, the possible surface roughening effect of alkaline hydrolysis of the polyester fibers was applied to manipulate surface topography while fluorocarbon polymer layer generates low surface energy. The results were compared with the method which created variety of surface roughness by changing the size of the nano-silica particles using the 3M water/oil repellency test, sliding (tilt) angle, microscopy (SEM), decay of hydrophobicity, self-cleaning, tensile properties, abrasion fastness, and air permeability. The results indicated the usefulness of the conventional polyester weight reduction process to control surface roughness for engineering superhydrophobic fabric with sliding angle as low as 7 degrees. Due to the applied conditions this process presents new facile procedure for industrial scale manufacturing of ultrahydrophobic polyester fabric.

  • 出版日期2011-12