摘要

An assessment is made of the modes of interannual variability in the seasonal mean summer and winter Southern Hemisphere (SE) 500-hPa geopotential height in the twentieth century in models from the Coupled Model Intercomparison Project (CMIP) phase 5 (CMIP5) dataset. Modes of variability of both the slow (signal) and intraseasonal (noise) components in the CMIP5 models are evaluated against those estimated from reanalysis data. There is general improvement in the leading modes of the slow (signal) component in CMIP5 models compared with the CMIP phase 3 (CMIP3) dataset. The largest improvement is in the spatial structures of the modes related to El Nino-Southern Oscillation variability in SH summer. An overall score metric is significantly higher for CMIP5 over CMIP3 in both seasons. The leading modes in the intraseasonal noise component are generally well reproduced in CMIP5 models, and there are few differences from CMIP3. A new total overall score metric is used to rank the CMIP5 models over both seasons. Weighting the seasons by the relative spread of overall scores is shown to be suitable for generating multimodel ensembles for further analysis of interannual variability. In multimodel ensembles, it is found that an ensemble of size 5 or 6 is sufficient in SH summer to reproduce well the dominant modes. In contrast, about 13 models are typically are required in SH winter. It is shown that it is necessary that the selected models individually reproduce well the leading modes of the slow component.

全文