A comprehensive survey of lignin geochemistry in the sedimentary organic matter along the Kapuas River (West Kalimantan, Indonesia)

作者:Loh, Pei Sun*; Chen, Chen Tung Arthur; Anshari, Gusti Z; Wang, Jough Tai; Lou, Jiann Yuh; Wang, Shu Lun
来源:Journal of Asian Earth Sciences, 2012, 43(1): 118-129.
DOI:10.1016/j.jseaes.2011.09.005

摘要

In this first study of lignin geochemistry in the world's longest river on an island, surface sediments were collected along the Kapuas River, three lakes in the upper river, a tributary in the lower river and a separate river during June-July 2007 and December 2007-January 2008. The samples were analyzed for lignin-derived phenols and bulk elemental and stable carbon isotope compositions. A values (the sum of eight lignin phenols, expressed as mg/100 mg organic carbon (OC)) ranged from 0.13 to 3.70. Ratios of syringyl/vanillyl (S/V) and cinnamyl/vanillyl (C/V) ranged from 0.34 to 1.18 and 0.28 to 1.40, respectively, indicating the presence of non-woody angiosperm tissues. The high vanillic acid to vanillin (Ad/Al)v (0.71-2.01) and syringic acid to syringaldehyde (Ad/Al)s (0.72-2.12) ratios indicate highly degraded lignin materials. In the upper Kapuas River, highly degraded soil materials discharged from lands that were barren as a result of deforestation activities were detected in the locations directly in those vicinities. The middle Kapuas River showed rapid organic matter degradation, probably due to the presence of fresh terrestrial and phytoplankton organic matter fueling the biogeochemical cycling. The Kapuas Kecil River, one of the two branches in the lower reach of the Kapuas River, showed higher levels and diagenesis of sedimentary organic matter due to input from anthropogenic sources and increased marine organic matter near the mouth. This study shows that different stretches along the river exhibit different levels and composition of sedimentary organic matter, as well as different carbon dynamics, which is directly attributable to the varying landscapes and quality of organic matter.