摘要

We report the results of a study of multicolor optical microvariability in the Blazar S5 0716+714. S5 0716+714 was observed in the B and I bands continuously for five consecutive nights in 2003 March. This is the first study to apply color analysis, structure function, and cross-correlation analysis on an optical data set with the temporal coverage and photometric quality that characterizes this data. The source displayed variability on timescales from days to tens of minutes in both bands. Discrete events in the light curves lead to the determination of a range in the size of the emission regions of R <= 1.07 x10(15) cm to R <= 9.8 x10(15) cm, adopting delta = 20 from Nesci et al. Hysteresis loops were found in plots of the B-band flux (F-B) and the ratio of the B to the I-band flux (F-B/I); these loops were found to be clockwise for dips in the light curves and counterclockwise for bursts. Their directionality and the symmetric nature of the flares are consistent with the flux variations being dominated by the light crossing time of the emission region and not its intrinsic electron cooling or acceleration timescales. The variability between B and I bands is highly correlated with no significant lags between the B and I-band flux variations detected. Significant lags were detected between the flux in the B band (F-B) and the B/I flux ratio (F-B/I). A structure function analysis shows similar slopes in both bands, lying in the range of -1.0 to -2.0, indicating that the observed variability is the result of a fractional noise process, consistent with the variations arising from a turbulent process. A differential I-band calibration for comparison star 4 from the sequence of Villata et al. is also provided.

  • 出版日期2011-2