A review of internally heat integrated distillation column

作者:Fang, Jing*; Cheng, Xiaomin; Li, Zhongyang; Li, Hao; Li, Chunli
来源:Chinese Journal of Chemical Engineering, 2019, 27(6): 1272-1281.
DOI:10.1016/j.cjche.2018.08.021

摘要

The energy consumption of distillation operation determines the amount of energy consumption throughout the chemical separation process. A heat integrated distillation column (HIDiC) could greatly reduce the irreversibility of the distillation process, so it gradually becomes a research hotspot. There are two major techniques for heat integration in HIDiC: internally and externally. This review paper describes the major research aspects of an internally heat integrated distillation column (IHIDiC), including the heat transfer models, various design structures (including the two-column HIDiC, Concentric HIDiC, Shell and tube HIDiC, Plate-fin HIDiC and the Super HIDiC, etc.), experimental research, simulation and optimization, process control research, as well as industrial plants and potential industrial applications. Among them, the heat transfer performance of various structures was analyzed of the various design structures based on experimental research, the effects of different factors (including relative volatility, reflux ratio, compression ratio, etc.) on HIDiC energy consumption or TAC is summarized in the simulation part. The calculation methods of the overall heat transfer coefficient and heat transfer models arc summarized. The various optimization algorithms and optimization results of simplified HIDiC are summarized in the optimization part. The research status and the key technical issues in various aspects of HIDiC are summarized in this paper. In order to meet the requirements of industrial energy efficiency, the selection of multi-component separation distillation configurations needs to be considered more diversified, and internal complex coupling relationship of HIDiC needs to be further studied.