摘要

This study proposed an element size selection technique, named the impact meshing technique, for a finite element wave propagation analysis model, which was characterized by determination of element division of the model with strain energy in the whole model and by static analysis (dynamic analysis in a single time-step) with boundary conditions, which are a maximum change of displacement in a time increment and inertial (impact) force caused by the displacement change. In this paper, examples of application of the impact meshing technique for the 3D ultrasonic wave propagation problem in elastic solids and the 2D acoustic wave propagation problem in fluid were described. Furthermore, the advantage of the impact meshing technique was represented by reduction of calculation time for determination of element subdivision compared with the conventional procedure with a dynamic transient analysis.

  • 出版日期2010-9