Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice

作者:Ruan Jhen Wei; Statt Sarah; Huang Chih Ting; Tsai Yi Ting; Kuo Cheng Chin; Chan Hong Lin; Liao Yu Chieh; Tan Tse Hua; Kao Cheng Yuan*
来源:Nature Microbiology, 2017, 2(2): 16220.
DOI:10.1038/nmicrobiol.2016.220

摘要

The gut microbiota plays profound roles in host metabolism and the inflammatory response associated with the development of obesity. Dusp6-deficient mice have been shown to be resistant to diet-induced obesity, but the mechanism behind this remains unclear. 16S ribosomal RNA gene analysis demonstrated that dusp6-deficient mice harbour unique gut microbiota with resistance to diet-induced-obesity-mediated alteration of the gut microbiome. Using a germ-free mouse model, we found that faecal/gut microbiota derived from dusp6-deficient mice significantly increased energy expenditure and reduced weight gain in recipient wild-type mice fed on a high-fat diet. On analysis of the intestinal transcriptome of dusp6-deficient mice, we found that dusp6 deficiency mainly induced biological processes involved in metabolism and the extracellular matrix, particularly the peroxisome proliferator-activated receptor gamma (Ppar gamma) pathway and tight-junction genes. Furthermore, dusp6-deficient mice have a high-fat-diet-specific transcriptomic response to reverse the expression of genes associated with intestinal barrier functions and mucosal immunity involved in microbiome homeostasis. This study demonstrates that dusp6 deficiency is a strong genetic factor shaping gut microbiota, and that it confers obesity protection by ameliorating the gut microbiota response to diet-mediated stress.