摘要

In this article, a novel fault-tolerant control (FTC) framework is presented for a class of non-linear networked control systems (NCSs) with Markov transfer delays. First, the NCSs are modelled by non-linear discrete Takagi-Sugeno fuzzy model using Euler approximate method. Then, a sliding mode-based fault estimation technique is developed for such model. With the estimated state and fault information, the proposed FTC framework can maintain the input-to-state stability of the faulty NCSs. A flexible joint robot link example is included to show the efficiency of the proposed method.