摘要

In this paper we present two new numerically stable methods based on Haar and Legendre wavelets for one- and two-dimensional parabolic partial differential equations (PPDEs). This work is the extension of the earlier work [1-3] from one- and two-dimensional boundary-value problems to one- and two-dimensional PPDEs. Two generic numerical algorithms are derived in two phases. In the first stage a numerical algorithm is derived by using Haar wavelets and then in the second stage Haar wavelets are replaced by Legendre wavelets in quest for better accuracy. In the proposed methods the time derivative is approximated by first order forward difference operator and space derivatives are approximated using Haar (Legendre) wavelets. Improved accuracy is obtained in the form of wavelets decomposition. The solution in this process is first obtained on a coarse grid and then refined towards higher Accuracy in the high resolution space. Accuracy wise performance of the Legendre wavelets collocation method (LWCM) is better than the Haar wavelets collocation method (HWCM) for problems having smooth initial data or having no shock phenomena in the solution space. If sharp transitions exists in the solution space or if there is a discontinuity between initial and boundary conditions, LWCM loses its accuracy in such cases, whereas HWCM produces a stable solution in such cases as well. Contrary to the existing methods, the accuracy of both HWCM and LWCM do not degrade in case of Neumann's boundary conditions. A distinctive feature of the proposed methods is its simple applicability for a variety of boundary conditions. Performances of both HWCM and LWCM are compared with the most recent methods reported in the literature. Numerical tests affirm better accuracy of the proposed methods for a range of benchmark problems.

  • 出版日期2013-12-1

全文