摘要

A detailed chemical kinetic mechanism is developed for the gas-phase combustion of a liquid monopropellant, which is a blend of propylene-glycol-dinitrate, dibutyl-sebacate, and 2-nitro-diphenylamine (Otto Fuel II). The combustor is modeled as a steady-state burner-stabilized flame. The simulations reveal that not all of the dibutyl-sebacate is consumed in the flame, with approximately 5% persisting in the post-flame region. A large class of combustion byproducts are formed that have boiling points above the post-flame temperature and thus would be expected to condense out along the length of the combustor. This post-flame, two-phase behavior is hypothesized to be the cause of empirically observed oily build-up within the engine. This work represents a novel advancement in predictive modeling for propellant design, as it provides mechanistic insight into the possible origins of engine fouling.

全文