摘要

Any living organism interacts with and responds specifically to environmental molecules by expressing specific olfactory receptors. In this paper, this specificity will be first examined in causal terms with particular emphasis on the mechanisms controlling olfactory gene expression, cell-to-cell interactions and odor-decoding processes. However, this type of explanation does not entirely justify the role olfactory receptors have played during evolution, since they are also expressed ectopically in different organs and/or tissues. Homologous olfactory genes have in fact been found in such diverse cells and/or organs as spermatozoa, testis and kidney where they are assumed to act as chemotactic sensors or renin modulators. To justify their functional diversity, homologous olfactory receptors are assumed to share the same basic role: that of conferring a self-identity to cells or tissues under varying environmental conditions. By adopting this standpoint, the functional attribution as olfactory or chemotactic sensors to these receptors should not be seen either as a cause conditioning receptor gene expression, or as a final effect resulting from genetically predetermined programs, but as a direct consequence of the environmental conditions olfactory receptor genes have explored during evolution. The association of odorant patterns with specific environmental or contextual situations makes their relationship semiotically triadic, due to the emergence of an interpretant capable of perceiving odorants as meaningful signs out of a noisy background. This perspective highlights the importance of odorant-receptor relationships as respect to the properties of the interacting partners. It is our contention that only when taken together can these different explanatory strategies provide a realistic account of how olfactory receptor genes have been structurally and functionally modified during evolution.

  • 出版日期2011-12