摘要

Gender effect is an inherent property of chemicals, characterized by variations caused by the chemical biology interaction. It has widely existed, but the shortage of an appropriate model restricts the study on gender-specific effect. The embryonic stem cell test (EST) has been utilized as an alternative test for developmental toxicity. Despite its numerous improvements, mouse embryonic stem cells with an XX karyotype have not been used in the EST, which restricts the ability of the EST to identify gender-specific effects during high throughput-screening (FITS) of chemicals-to date. To address this, the embryonic stem cell (ESC) SP3 line with an XX karyotype was used to establish a "female" model as a complement to EST. Here, we proposed a "double-objects in unison" (DOU)-EST, which consisted of male ESC and female ESC; a seven-day EST protocol was utilized, and the gender-specific effect of chemicals was determined and discriminated; the replacement of myosin heavy chain (MHC) with myosin light chain (MLC) provided a suitable molecular biomarker in the DOU-EST. New linear discriminant functions were given in the purpose of distinguishing chemicals into three classes, namely, no gender-specific effect, male-susceptive, and female-susceptive. For 15 chemicals in the training set, the concordances of prediction result as no gender effect, male susceptive, and female susceptive were 86.67%, 86.67%, and 93.33%, respectively, the sensitivities were 66.67%, 83.33%, and 83.33%, respectively, and the specificities were 91.67%, 88.89%, and 100%, respectively; the total accuracy of DOU-EST was 86.67%. For three chemicals in the test set, one was incorrectively predicted. The possible reason for misclassification may due to the absence of hormone environment in vitro. Leave-one-out cross-validation (LOOCV) indicated a mean error rate of 18.34%. Taken together, these data suggested a good performance of the proposed DOU-EST. Emerging chemicals with undiscovered gender-specific effects are anticipated to be screened with the DOU-EST.